File: | compat/regex/regex_internal.c |
Location: | line 1326, column 7 |
Description: | Value stored to 'idx' is never read |
1 | /* Extended regular expression matching and search library. |
2 | Copyright (C) 2002-2006, 2010 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, write to the Free |
18 | Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
19 | 02110-1301 USA. */ |
20 | |
21 | static void re_string_construct_common (const char *str, int len, |
22 | re_string_t *pstr, |
23 | RE_TRANSLATE_TYPEunsigned char * trans, int icase, |
24 | const re_dfa_t *dfa) internal_function; |
25 | static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa, |
26 | const re_node_set *nodes, |
27 | unsigned int hash) internal_function; |
28 | static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa, |
29 | const re_node_set *nodes, |
30 | unsigned int context, |
31 | unsigned int hash) internal_function; |
32 | |
33 | #ifdef GAWK1 |
34 | #undef MAX /* safety */ |
35 | static int |
36 | MAX(size_t a, size_t b) |
37 | { |
38 | return (a > b ? a : b); |
39 | } |
40 | #endif |
41 | |
42 | /* Functions for string operation. */ |
43 | |
44 | /* This function allocate the buffers. It is necessary to call |
45 | re_string_reconstruct before using the object. */ |
46 | |
47 | static reg_errcode_t |
48 | internal_function |
49 | re_string_allocate (re_string_t *pstr, const char *str, int len, int init_len, |
50 | RE_TRANSLATE_TYPEunsigned char * trans, int icase, const re_dfa_t *dfa) |
51 | { |
52 | reg_errcode_t ret; |
53 | int init_buf_len; |
54 | |
55 | /* Ensure at least one character fits into the buffers. */ |
56 | if (init_len < dfa->mb_cur_max) |
57 | init_len = dfa->mb_cur_max; |
58 | init_buf_len = (len + 1 < init_len) ? len + 1: init_len; |
59 | re_string_construct_common (str, len, pstr, trans, icase, dfa); |
60 | |
61 | ret = re_string_realloc_buffers (pstr, init_buf_len); |
62 | if (BE (ret != REG_NOERROR, 0)__builtin_expect (ret != REG_NOERROR, 0)) |
63 | return ret; |
64 | |
65 | pstr->word_char = dfa->word_char; |
66 | pstr->word_ops_used = dfa->word_ops_used; |
67 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; |
68 | pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len; |
69 | pstr->valid_raw_len = pstr->valid_len; |
70 | return REG_NOERROR; |
71 | } |
72 | |
73 | /* This function allocate the buffers, and initialize them. */ |
74 | |
75 | static reg_errcode_t |
76 | internal_function |
77 | re_string_construct (re_string_t *pstr, const char *str, int len, |
78 | RE_TRANSLATE_TYPEunsigned char * trans, int icase, const re_dfa_t *dfa) |
79 | { |
80 | reg_errcode_t ret; |
81 | memset (pstr, '\0', sizeof (re_string_t))__builtin___memset_chk (pstr, '\0', sizeof (re_string_t), __builtin_object_size (pstr, 0)); |
82 | re_string_construct_common (str, len, pstr, trans, icase, dfa); |
83 | |
84 | if (len > 0) |
85 | { |
86 | ret = re_string_realloc_buffers (pstr, len + 1); |
87 | if (BE (ret != REG_NOERROR, 0)__builtin_expect (ret != REG_NOERROR, 0)) |
88 | return ret; |
89 | } |
90 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; |
91 | |
92 | if (icase) |
93 | { |
94 | #ifdef RE_ENABLE_I18N |
95 | if (dfa->mb_cur_max > 1) |
96 | { |
97 | while (1) |
98 | { |
99 | ret = build_wcs_upper_buffer (pstr); |
100 | if (BE (ret != REG_NOERROR, 0)__builtin_expect (ret != REG_NOERROR, 0)) |
101 | return ret; |
102 | if (pstr->valid_raw_len >= len) |
103 | break; |
104 | if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max) |
105 | break; |
106 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); |
107 | if (BE (ret != REG_NOERROR, 0)__builtin_expect (ret != REG_NOERROR, 0)) |
108 | return ret; |
109 | } |
110 | } |
111 | else |
112 | #endif /* RE_ENABLE_I18N */ |
113 | build_upper_buffer (pstr); |
114 | } |
115 | else |
116 | { |
117 | #ifdef RE_ENABLE_I18N |
118 | if (dfa->mb_cur_max > 1) |
119 | build_wcs_buffer (pstr); |
120 | else |
121 | #endif /* RE_ENABLE_I18N */ |
122 | { |
123 | if (trans != NULL((void*)0)) |
124 | re_string_translate_buffer (pstr); |
125 | else |
126 | { |
127 | pstr->valid_len = pstr->bufs_len; |
128 | pstr->valid_raw_len = pstr->bufs_len; |
129 | } |
130 | } |
131 | } |
132 | |
133 | return REG_NOERROR; |
134 | } |
135 | |
136 | /* Helper functions for re_string_allocate, and re_string_construct. */ |
137 | |
138 | static reg_errcode_t |
139 | internal_function |
140 | re_string_realloc_buffers (re_string_t *pstr, int new_buf_len) |
141 | { |
142 | #ifdef RE_ENABLE_I18N |
143 | if (pstr->mb_cur_max > 1) |
144 | { |
145 | wint_t *new_wcs; |
146 | |
147 | /* Avoid overflow in realloc. */ |
148 | const size_t max_object_size = MAX (sizeof (wint_t), sizeof (int)); |
149 | if (BE (SIZE_MAX / max_object_size < new_buf_len, 0)__builtin_expect (18446744073709551615ULL / max_object_size < new_buf_len, 0)) |
150 | return REG_ESPACE; |
151 | |
152 | new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len)((pstr->wcs != ((void*)0)) ? (wint_t *) realloc (pstr-> wcs,(new_buf_len)*sizeof(wint_t)) : (wint_t *) calloc(new_buf_len ,sizeof(wint_t))); |
153 | if (BE (new_wcs == NULL, 0)__builtin_expect (new_wcs == ((void*)0), 0)) |
154 | return REG_ESPACE; |
155 | pstr->wcs = new_wcs; |
156 | if (pstr->offsets != NULL((void*)0)) |
157 | { |
158 | int *new_offsets = re_realloc (pstr->offsets, int, new_buf_len)((pstr->offsets != ((void*)0)) ? (int *) realloc (pstr-> offsets,(new_buf_len)*sizeof(int)) : (int *) calloc(new_buf_len ,sizeof(int))); |
159 | if (BE (new_offsets == NULL, 0)__builtin_expect (new_offsets == ((void*)0), 0)) |
160 | return REG_ESPACE; |
161 | pstr->offsets = new_offsets; |
162 | } |
163 | } |
164 | #endif /* RE_ENABLE_I18N */ |
165 | if (pstr->mbs_allocated) |
166 | { |
167 | unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char,((pstr->mbs != ((void*)0)) ? (unsigned char *) realloc (pstr ->mbs,(new_buf_len)*sizeof(unsigned char)) : (unsigned char *) calloc(new_buf_len,sizeof(unsigned char))) |
168 | new_buf_len)((pstr->mbs != ((void*)0)) ? (unsigned char *) realloc (pstr ->mbs,(new_buf_len)*sizeof(unsigned char)) : (unsigned char *) calloc(new_buf_len,sizeof(unsigned char))); |
169 | if (BE (new_mbs == NULL, 0)__builtin_expect (new_mbs == ((void*)0), 0)) |
170 | return REG_ESPACE; |
171 | pstr->mbs = new_mbs; |
172 | } |
173 | pstr->bufs_len = new_buf_len; |
174 | return REG_NOERROR; |
175 | } |
176 | |
177 | |
178 | static void |
179 | internal_function |
180 | re_string_construct_common (const char *str, int len, re_string_t *pstr, |
181 | RE_TRANSLATE_TYPEunsigned char * trans, int icase, |
182 | const re_dfa_t *dfa) |
183 | { |
184 | pstr->raw_mbs = (const unsigned char *) str; |
185 | pstr->len = len; |
186 | pstr->raw_len = len; |
187 | pstr->trans = trans; |
188 | pstr->icase = icase ? 1 : 0; |
189 | pstr->mbs_allocated = (trans != NULL((void*)0) || icase); |
190 | pstr->mb_cur_max = dfa->mb_cur_max; |
191 | pstr->is_utf8 = dfa->is_utf8; |
192 | pstr->map_notascii = dfa->map_notascii; |
193 | pstr->stop = pstr->len; |
194 | pstr->raw_stop = pstr->stop; |
195 | } |
196 | |
197 | #ifdef RE_ENABLE_I18N |
198 | |
199 | /* Build wide character buffer PSTR->WCS. |
200 | If the byte sequence of the string are: |
201 | <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3> |
202 | Then wide character buffer will be: |
203 | <wc1> , WEOF , <wc2> , WEOF , <wc3> |
204 | We use WEOF for padding, they indicate that the position isn't |
205 | a first byte of a multibyte character. |
206 | |
207 | Note that this function assumes PSTR->VALID_LEN elements are already |
208 | built and starts from PSTR->VALID_LEN. */ |
209 | |
210 | static void |
211 | internal_function |
212 | build_wcs_buffer (re_string_t *pstr) |
213 | { |
214 | #ifdef _LIBC |
215 | unsigned char buf[MB_LEN_MAX6]; |
216 | assert (MB_LEN_MAX >= pstr->mb_cur_max)(__builtin_expect(!(6 >= pstr->mb_cur_max), 0) ? __assert_rtn (__func__, "compat/regex/regex_internal.c", 216, "MB_LEN_MAX >= pstr->mb_cur_max" ) : (void)0); |
217 | #else |
218 | unsigned char buf[64]; |
219 | #endif |
220 | mbstate_t prev_st; |
221 | int byte_idx, end_idx, remain_len; |
222 | size_t mbclen; |
223 | |
224 | /* Build the buffers from pstr->valid_len to either pstr->len or |
225 | pstr->bufs_len. */ |
226 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
227 | for (byte_idx = pstr->valid_len; byte_idx < end_idx;) |
228 | { |
229 | wchar_t wc; |
230 | const char *p; |
231 | |
232 | remain_len = end_idx - byte_idx; |
233 | prev_st = pstr->cur_state; |
234 | /* Apply the translation if we need. */ |
235 | if (BE (pstr->trans != NULL, 0)__builtin_expect (pstr->trans != ((void*)0), 0)) |
236 | { |
237 | int i, ch; |
238 | |
239 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) |
240 | { |
241 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i]; |
242 | buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch]; |
243 | } |
244 | p = (const char *) buf; |
245 | } |
246 | else |
247 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx; |
248 | mbclen = __mbrtowcmbrtowc (&wc, p, remain_len, &pstr->cur_state); |
249 | if (BE (mbclen == (size_t) -2, 0)__builtin_expect (mbclen == (size_t) -2, 0)) |
250 | { |
251 | /* The buffer doesn't have enough space, finish to build. */ |
252 | pstr->cur_state = prev_st; |
253 | break; |
254 | } |
255 | else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0)__builtin_expect (mbclen == (size_t) -1 || mbclen == 0, 0)) |
256 | { |
257 | /* We treat these cases as a singlebyte character. */ |
258 | mbclen = 1; |
259 | wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; |
260 | if (BE (pstr->trans != NULL, 0)__builtin_expect (pstr->trans != ((void*)0), 0)) |
261 | wc = pstr->trans[wc]; |
262 | pstr->cur_state = prev_st; |
263 | } |
264 | |
265 | /* Write wide character and padding. */ |
266 | pstr->wcs[byte_idx++] = wc; |
267 | /* Write paddings. */ |
268 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
269 | pstr->wcs[byte_idx++] = WEOF; |
270 | } |
271 | pstr->valid_len = byte_idx; |
272 | pstr->valid_raw_len = byte_idx; |
273 | } |
274 | |
275 | /* Build wide character buffer PSTR->WCS like build_wcs_buffer, |
276 | but for REG_ICASE. */ |
277 | |
278 | static reg_errcode_t |
279 | internal_function |
280 | build_wcs_upper_buffer (re_string_t *pstr) |
281 | { |
282 | mbstate_t prev_st; |
283 | int src_idx, byte_idx, end_idx, remain_len; |
284 | size_t mbclen; |
285 | #ifdef _LIBC |
286 | char buf[MB_LEN_MAX6]; |
287 | assert (MB_LEN_MAX >= pstr->mb_cur_max)(__builtin_expect(!(6 >= pstr->mb_cur_max), 0) ? __assert_rtn (__func__, "compat/regex/regex_internal.c", 287, "MB_LEN_MAX >= pstr->mb_cur_max" ) : (void)0); |
288 | #else |
289 | char buf[64]; |
290 | #endif |
291 | |
292 | byte_idx = pstr->valid_len; |
293 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
294 | |
295 | /* The following optimization assumes that ASCII characters can be |
296 | mapped to wide characters with a simple cast. */ |
297 | if (! pstr->map_notascii && pstr->trans == NULL((void*)0) && !pstr->offsets_needed) |
298 | { |
299 | while (byte_idx < end_idx) |
300 | { |
301 | wchar_t wc; |
302 | |
303 | if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]) |
304 | && mbsinit (&pstr->cur_state)) |
305 | { |
306 | /* In case of a singlebyte character. */ |
307 | pstr->mbs[byte_idx] |
308 | = toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]); |
309 | /* The next step uses the assumption that wchar_t is encoded |
310 | ASCII-safe: all ASCII values can be converted like this. */ |
311 | pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx]; |
312 | ++byte_idx; |
313 | continue; |
314 | } |
315 | |
316 | remain_len = end_idx - byte_idx; |
317 | prev_st = pstr->cur_state; |
318 | mbclen = __mbrtowcmbrtowc (&wc, |
319 | ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx |
320 | + byte_idx), remain_len, &pstr->cur_state); |
321 | if (BE (mbclen + 2 > 2, 1)__builtin_expect (mbclen + 2 > 2, 1)) |
322 | { |
323 | wchar_t wcu = wc; |
324 | if (iswlower (wc)) |
325 | { |
326 | size_t mbcdlen; |
327 | |
328 | wcu = towupper (wc); |
329 | mbcdlen = wcrtomb (buf, wcu, &prev_st); |
330 | if (BE (mbclen == mbcdlen, 1)__builtin_expect (mbclen == mbcdlen, 1)) |
331 | memcpy (pstr->mbs + byte_idx, buf, mbclen)__builtin___memcpy_chk (pstr->mbs + byte_idx, buf, mbclen, __builtin_object_size (pstr->mbs + byte_idx, 0)); |
332 | else |
333 | { |
334 | src_idx = byte_idx; |
335 | goto offsets_needed; |
336 | } |
337 | } |
338 | else |
339 | memcpy (pstr->mbs + byte_idx,__builtin___memcpy_chk (pstr->mbs + byte_idx, pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen, __builtin_object_size (pstr->mbs + byte_idx, 0)) |
340 | pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen)__builtin___memcpy_chk (pstr->mbs + byte_idx, pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen, __builtin_object_size (pstr->mbs + byte_idx, 0)); |
341 | pstr->wcs[byte_idx++] = wcu; |
342 | /* Write paddings. */ |
343 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
344 | pstr->wcs[byte_idx++] = WEOF; |
345 | } |
346 | else if (mbclen == (size_t) -1 || mbclen == 0) |
347 | { |
348 | /* It is an invalid character or '\0'. Just use the byte. */ |
349 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; |
350 | pstr->mbs[byte_idx] = ch; |
351 | /* And also cast it to wide char. */ |
352 | pstr->wcs[byte_idx++] = (wchar_t) ch; |
353 | if (BE (mbclen == (size_t) -1, 0)__builtin_expect (mbclen == (size_t) -1, 0)) |
354 | pstr->cur_state = prev_st; |
355 | } |
356 | else |
357 | { |
358 | /* The buffer doesn't have enough space, finish to build. */ |
359 | pstr->cur_state = prev_st; |
360 | break; |
361 | } |
362 | } |
363 | pstr->valid_len = byte_idx; |
364 | pstr->valid_raw_len = byte_idx; |
365 | return REG_NOERROR; |
366 | } |
367 | else |
368 | for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;) |
369 | { |
370 | wchar_t wc; |
371 | const char *p; |
372 | offsets_needed: |
373 | remain_len = end_idx - byte_idx; |
374 | prev_st = pstr->cur_state; |
375 | if (BE (pstr->trans != NULL, 0)__builtin_expect (pstr->trans != ((void*)0), 0)) |
376 | { |
377 | int i, ch; |
378 | |
379 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) |
380 | { |
381 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i]; |
382 | buf[i] = pstr->trans[ch]; |
383 | } |
384 | p = (const char *) buf; |
385 | } |
386 | else |
387 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx; |
388 | mbclen = __mbrtowcmbrtowc (&wc, p, remain_len, &pstr->cur_state); |
389 | if (BE (mbclen + 2 > 2, 1)__builtin_expect (mbclen + 2 > 2, 1)) |
390 | { |
391 | wchar_t wcu = wc; |
392 | if (iswlower (wc)) |
393 | { |
394 | size_t mbcdlen; |
395 | |
396 | wcu = towupper (wc); |
397 | mbcdlen = wcrtomb ((char *) buf, wcu, &prev_st); |
398 | if (BE (mbclen == mbcdlen, 1)__builtin_expect (mbclen == mbcdlen, 1)) |
399 | memcpy (pstr->mbs + byte_idx, buf, mbclen)__builtin___memcpy_chk (pstr->mbs + byte_idx, buf, mbclen, __builtin_object_size (pstr->mbs + byte_idx, 0)); |
400 | else if (mbcdlen != (size_t) -1) |
401 | { |
402 | size_t i; |
403 | |
404 | if (byte_idx + mbcdlen > pstr->bufs_len) |
405 | { |
406 | pstr->cur_state = prev_st; |
407 | break; |
408 | } |
409 | |
410 | if (pstr->offsets == NULL((void*)0)) |
411 | { |
412 | pstr->offsets = re_malloc (int, pstr->bufs_len)((int *) malloc ((pstr->bufs_len) * sizeof (int))); |
413 | |
414 | if (pstr->offsets == NULL((void*)0)) |
415 | return REG_ESPACE; |
416 | } |
417 | if (!pstr->offsets_needed) |
418 | { |
419 | for (i = 0; i < (size_t) byte_idx; ++i) |
420 | pstr->offsets[i] = i; |
421 | pstr->offsets_needed = 1; |
422 | } |
423 | |
424 | memcpy (pstr->mbs + byte_idx, buf, mbcdlen)__builtin___memcpy_chk (pstr->mbs + byte_idx, buf, mbcdlen , __builtin_object_size (pstr->mbs + byte_idx, 0)); |
425 | pstr->wcs[byte_idx] = wcu; |
426 | pstr->offsets[byte_idx] = src_idx; |
427 | for (i = 1; i < mbcdlen; ++i) |
428 | { |
429 | pstr->offsets[byte_idx + i] |
430 | = src_idx + (i < mbclen ? i : mbclen - 1); |
431 | pstr->wcs[byte_idx + i] = WEOF; |
432 | } |
433 | pstr->len += mbcdlen - mbclen; |
434 | if (pstr->raw_stop > src_idx) |
435 | pstr->stop += mbcdlen - mbclen; |
436 | end_idx = (pstr->bufs_len > pstr->len) |
437 | ? pstr->len : pstr->bufs_len; |
438 | byte_idx += mbcdlen; |
439 | src_idx += mbclen; |
440 | continue; |
441 | } |
442 | else |
443 | memcpy (pstr->mbs + byte_idx, p, mbclen)__builtin___memcpy_chk (pstr->mbs + byte_idx, p, mbclen, __builtin_object_size (pstr->mbs + byte_idx, 0)); |
444 | } |
445 | else |
446 | memcpy (pstr->mbs + byte_idx, p, mbclen)__builtin___memcpy_chk (pstr->mbs + byte_idx, p, mbclen, __builtin_object_size (pstr->mbs + byte_idx, 0)); |
447 | |
448 | if (BE (pstr->offsets_needed != 0, 0)__builtin_expect (pstr->offsets_needed != 0, 0)) |
449 | { |
450 | size_t i; |
451 | for (i = 0; i < mbclen; ++i) |
452 | pstr->offsets[byte_idx + i] = src_idx + i; |
453 | } |
454 | src_idx += mbclen; |
455 | |
456 | pstr->wcs[byte_idx++] = wcu; |
457 | /* Write paddings. */ |
458 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
459 | pstr->wcs[byte_idx++] = WEOF; |
460 | } |
461 | else if (mbclen == (size_t) -1 || mbclen == 0) |
462 | { |
463 | /* It is an invalid character or '\0'. Just use the byte. */ |
464 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx]; |
465 | |
466 | if (BE (pstr->trans != NULL, 0)__builtin_expect (pstr->trans != ((void*)0), 0)) |
467 | ch = pstr->trans [ch]; |
468 | pstr->mbs[byte_idx] = ch; |
469 | |
470 | if (BE (pstr->offsets_needed != 0, 0)__builtin_expect (pstr->offsets_needed != 0, 0)) |
471 | pstr->offsets[byte_idx] = src_idx; |
472 | ++src_idx; |
473 | |
474 | /* And also cast it to wide char. */ |
475 | pstr->wcs[byte_idx++] = (wchar_t) ch; |
476 | if (BE (mbclen == (size_t) -1, 0)__builtin_expect (mbclen == (size_t) -1, 0)) |
477 | pstr->cur_state = prev_st; |
478 | } |
479 | else |
480 | { |
481 | /* The buffer doesn't have enough space, finish to build. */ |
482 | pstr->cur_state = prev_st; |
483 | break; |
484 | } |
485 | } |
486 | pstr->valid_len = byte_idx; |
487 | pstr->valid_raw_len = src_idx; |
488 | return REG_NOERROR; |
489 | } |
490 | |
491 | /* Skip characters until the index becomes greater than NEW_RAW_IDX. |
492 | Return the index. */ |
493 | |
494 | static int |
495 | internal_function |
496 | re_string_skip_chars (re_string_t *pstr, int new_raw_idx, wint_t *last_wc) |
497 | { |
498 | mbstate_t prev_st; |
499 | int rawbuf_idx; |
500 | size_t mbclen; |
501 | wint_t wc = WEOF; |
502 | |
503 | /* Skip the characters which are not necessary to check. */ |
504 | for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len; |
505 | rawbuf_idx < new_raw_idx;) |
506 | { |
507 | wchar_t wc2; |
508 | int remain_len = pstr->len - rawbuf_idx; |
509 | prev_st = pstr->cur_state; |
510 | mbclen = __mbrtowcmbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx, |
511 | remain_len, &pstr->cur_state); |
512 | if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0)__builtin_expect (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0)) |
513 | { |
514 | /* We treat these cases as a single byte character. */ |
515 | if (mbclen == 0 || remain_len == 0) |
516 | wc = L'\0'; |
517 | else |
518 | wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx); |
519 | mbclen = 1; |
520 | pstr->cur_state = prev_st; |
521 | } |
522 | else |
523 | wc = (wint_t) wc2; |
524 | /* Then proceed the next character. */ |
525 | rawbuf_idx += mbclen; |
526 | } |
527 | *last_wc = (wint_t) wc; |
528 | return rawbuf_idx; |
529 | } |
530 | #endif /* RE_ENABLE_I18N */ |
531 | |
532 | /* Build the buffer PSTR->MBS, and apply the translation if we need. |
533 | This function is used in case of REG_ICASE. */ |
534 | |
535 | static void |
536 | internal_function |
537 | build_upper_buffer (re_string_t *pstr) |
538 | { |
539 | int char_idx, end_idx; |
540 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
541 | |
542 | for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx) |
543 | { |
544 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx]; |
545 | if (BE (pstr->trans != NULL, 0)__builtin_expect (pstr->trans != ((void*)0), 0)) |
546 | ch = pstr->trans[ch]; |
547 | if (islower (ch)) |
548 | pstr->mbs[char_idx] = toupper (ch); |
549 | else |
550 | pstr->mbs[char_idx] = ch; |
551 | } |
552 | pstr->valid_len = char_idx; |
553 | pstr->valid_raw_len = char_idx; |
554 | } |
555 | |
556 | /* Apply TRANS to the buffer in PSTR. */ |
557 | |
558 | static void |
559 | internal_function |
560 | re_string_translate_buffer (re_string_t *pstr) |
561 | { |
562 | int buf_idx, end_idx; |
563 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
564 | |
565 | for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx) |
566 | { |
567 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx]; |
568 | pstr->mbs[buf_idx] = pstr->trans[ch]; |
569 | } |
570 | |
571 | pstr->valid_len = buf_idx; |
572 | pstr->valid_raw_len = buf_idx; |
573 | } |
574 | |
575 | /* This function re-construct the buffers. |
576 | Concretely, convert to wide character in case of pstr->mb_cur_max > 1, |
577 | convert to upper case in case of REG_ICASE, apply translation. */ |
578 | |
579 | static reg_errcode_t |
580 | internal_function |
581 | re_string_reconstruct (re_string_t *pstr, int idx, int eflags) |
582 | { |
583 | int offset = idx - pstr->raw_mbs_idx; |
584 | if (BE (offset < 0, 0)__builtin_expect (offset < 0, 0)) |
585 | { |
586 | /* Reset buffer. */ |
587 | #ifdef RE_ENABLE_I18N |
588 | if (pstr->mb_cur_max > 1) |
589 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t))__builtin___memset_chk (&pstr->cur_state, '\0', sizeof (mbstate_t), __builtin_object_size (&pstr->cur_state, 0)); |
590 | #endif /* RE_ENABLE_I18N */ |
591 | pstr->len = pstr->raw_len; |
592 | pstr->stop = pstr->raw_stop; |
593 | pstr->valid_len = 0; |
594 | pstr->raw_mbs_idx = 0; |
595 | pstr->valid_raw_len = 0; |
596 | pstr->offsets_needed = 0; |
597 | pstr->tip_context = ((eflags & REG_NOTBOL1) ? CONTEXT_BEGBUF((1 << 1) << 1) |
598 | : CONTEXT_NEWLINE(1 << 1) | CONTEXT_BEGBUF((1 << 1) << 1)); |
599 | if (!pstr->mbs_allocated) |
600 | pstr->mbs = (unsigned char *) pstr->raw_mbs; |
601 | offset = idx; |
602 | } |
603 | |
604 | if (BE (offset != 0, 1)__builtin_expect (offset != 0, 1)) |
605 | { |
606 | /* Should the already checked characters be kept? */ |
607 | if (BE (offset < pstr->valid_raw_len, 1)__builtin_expect (offset < pstr->valid_raw_len, 1)) |
608 | { |
609 | /* Yes, move them to the front of the buffer. */ |
610 | #ifdef RE_ENABLE_I18N |
611 | if (BE (pstr->offsets_needed, 0)__builtin_expect (pstr->offsets_needed, 0)) |
612 | { |
613 | int low = 0, high = pstr->valid_len, mid; |
614 | do |
615 | { |
616 | mid = (high + low) / 2; |
617 | if (pstr->offsets[mid] > offset) |
618 | high = mid; |
619 | else if (pstr->offsets[mid] < offset) |
620 | low = mid + 1; |
621 | else |
622 | break; |
623 | } |
624 | while (low < high); |
625 | if (pstr->offsets[mid] < offset) |
626 | ++mid; |
627 | pstr->tip_context = re_string_context_at (pstr, mid - 1, |
628 | eflags); |
629 | /* This can be quite complicated, so handle specially |
630 | only the common and easy case where the character with |
631 | different length representation of lower and upper |
632 | case is present at or after offset. */ |
633 | if (pstr->valid_len > offset |
634 | && mid == offset && pstr->offsets[mid] == offset) |
635 | { |
636 | memmove (pstr->wcs, pstr->wcs + offset,__builtin___memmove_chk (pstr->wcs, pstr->wcs + offset, (pstr->valid_len - offset) * sizeof (wint_t), __builtin_object_size (pstr->wcs, 0)) |
637 | (pstr->valid_len - offset) * sizeof (wint_t))__builtin___memmove_chk (pstr->wcs, pstr->wcs + offset, (pstr->valid_len - offset) * sizeof (wint_t), __builtin_object_size (pstr->wcs, 0)); |
638 | memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset)__builtin___memmove_chk (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset, __builtin_object_size (pstr-> mbs, 0)); |
639 | pstr->valid_len -= offset; |
640 | pstr->valid_raw_len -= offset; |
641 | for (low = 0; low < pstr->valid_len; low++) |
642 | pstr->offsets[low] = pstr->offsets[low + offset] - offset; |
643 | } |
644 | else |
645 | { |
646 | /* Otherwise, just find out how long the partial multibyte |
647 | character at offset is and fill it with WEOF/255. */ |
648 | pstr->len = pstr->raw_len - idx + offset; |
649 | pstr->stop = pstr->raw_stop - idx + offset; |
650 | pstr->offsets_needed = 0; |
651 | while (mid > 0 && pstr->offsets[mid - 1] == offset) |
652 | --mid; |
653 | while (mid < pstr->valid_len) |
654 | if (pstr->wcs[mid] != WEOF) |
655 | break; |
656 | else |
657 | ++mid; |
658 | if (mid == pstr->valid_len) |
659 | pstr->valid_len = 0; |
660 | else |
661 | { |
662 | pstr->valid_len = pstr->offsets[mid] - offset; |
663 | if (pstr->valid_len) |
664 | { |
665 | for (low = 0; low < pstr->valid_len; ++low) |
666 | pstr->wcs[low] = WEOF; |
667 | memset (pstr->mbs, 255, pstr->valid_len)__builtin___memset_chk (pstr->mbs, 255, pstr->valid_len , __builtin_object_size (pstr->mbs, 0)); |
668 | } |
669 | } |
670 | pstr->valid_raw_len = pstr->valid_len; |
671 | } |
672 | } |
673 | else |
674 | #endif |
675 | { |
676 | pstr->tip_context = re_string_context_at (pstr, offset - 1, |
677 | eflags); |
678 | #ifdef RE_ENABLE_I18N |
679 | if (pstr->mb_cur_max > 1) |
680 | memmove (pstr->wcs, pstr->wcs + offset,__builtin___memmove_chk (pstr->wcs, pstr->wcs + offset, (pstr->valid_len - offset) * sizeof (wint_t), __builtin_object_size (pstr->wcs, 0)) |
681 | (pstr->valid_len - offset) * sizeof (wint_t))__builtin___memmove_chk (pstr->wcs, pstr->wcs + offset, (pstr->valid_len - offset) * sizeof (wint_t), __builtin_object_size (pstr->wcs, 0)); |
682 | #endif /* RE_ENABLE_I18N */ |
683 | if (BE (pstr->mbs_allocated, 0)__builtin_expect (pstr->mbs_allocated, 0)) |
684 | memmove (pstr->mbs, pstr->mbs + offset,__builtin___memmove_chk (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset, __builtin_object_size (pstr-> mbs, 0)) |
685 | pstr->valid_len - offset)__builtin___memmove_chk (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset, __builtin_object_size (pstr-> mbs, 0)); |
686 | pstr->valid_len -= offset; |
687 | pstr->valid_raw_len -= offset; |
688 | #if DEBUG |
689 | assert (pstr->valid_len > 0)(__builtin_expect(!(pstr->valid_len > 0), 0) ? __assert_rtn (__func__, "compat/regex/regex_internal.c", 689, "pstr->valid_len > 0" ) : (void)0); |
690 | #endif |
691 | } |
692 | } |
693 | else |
694 | { |
695 | #ifdef RE_ENABLE_I18N |
696 | /* No, skip all characters until IDX. */ |
697 | int prev_valid_len = pstr->valid_len; |
698 | |
699 | if (BE (pstr->offsets_needed, 0)__builtin_expect (pstr->offsets_needed, 0)) |
700 | { |
701 | pstr->len = pstr->raw_len - idx + offset; |
702 | pstr->stop = pstr->raw_stop - idx + offset; |
703 | pstr->offsets_needed = 0; |
704 | } |
705 | #endif |
706 | pstr->valid_len = 0; |
707 | #ifdef RE_ENABLE_I18N |
708 | if (pstr->mb_cur_max > 1) |
709 | { |
710 | int wcs_idx; |
711 | wint_t wc = WEOF; |
712 | |
713 | if (pstr->is_utf8) |
714 | { |
715 | const unsigned char *raw, *p, *end; |
716 | |
717 | /* Special case UTF-8. Multi-byte chars start with any |
718 | byte other than 0x80 - 0xbf. */ |
719 | raw = pstr->raw_mbs + pstr->raw_mbs_idx; |
720 | end = raw + (offset - pstr->mb_cur_max); |
721 | if (end < pstr->raw_mbs) |
722 | end = pstr->raw_mbs; |
723 | p = raw + offset - 1; |
724 | #ifdef _LIBC |
725 | /* We know the wchar_t encoding is UCS4, so for the simple |
726 | case, ASCII characters, skip the conversion step. */ |
727 | if (isascii (*p) && BE (pstr->trans == NULL, 1)__builtin_expect (pstr->trans == ((void*)0), 1)) |
728 | { |
729 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t))__builtin___memset_chk (&pstr->cur_state, '\0', sizeof (mbstate_t), __builtin_object_size (&pstr->cur_state, 0)); |
730 | /* pstr->valid_len = 0; */ |
731 | wc = (wchar_t) *p; |
732 | } |
733 | else |
734 | #endif |
735 | for (; p >= end; --p) |
736 | if ((*p & 0xc0) != 0x80) |
737 | { |
738 | mbstate_t cur_state; |
739 | wchar_t wc2; |
740 | int mlen = raw + pstr->len - p; |
741 | unsigned char buf[6]; |
742 | size_t mbclen; |
743 | |
744 | if (BE (pstr->trans != NULL, 0)__builtin_expect (pstr->trans != ((void*)0), 0)) |
745 | { |
746 | int i = mlen < 6 ? mlen : 6; |
747 | while (--i >= 0) |
748 | buf[i] = pstr->trans[p[i]]; |
749 | } |
750 | /* XXX Don't use mbrtowc, we know which conversion |
751 | to use (UTF-8 -> UCS4). */ |
752 | memset (&cur_state, 0, sizeof (cur_state))__builtin___memset_chk (&cur_state, 0, sizeof (cur_state) , __builtin_object_size (&cur_state, 0)); |
753 | mbclen = __mbrtowcmbrtowc (&wc2, (const char *) p, mlen, |
754 | &cur_state); |
755 | if (raw + offset - p <= mbclen |
756 | && mbclen < (size_t) -2) |
757 | { |
758 | memset (&pstr->cur_state, '\0',__builtin___memset_chk (&pstr->cur_state, '\0', sizeof (mbstate_t), __builtin_object_size (&pstr->cur_state, 0)) |
759 | sizeof (mbstate_t))__builtin___memset_chk (&pstr->cur_state, '\0', sizeof (mbstate_t), __builtin_object_size (&pstr->cur_state, 0)); |
760 | pstr->valid_len = mbclen - (raw + offset - p); |
761 | wc = wc2; |
762 | } |
763 | break; |
764 | } |
765 | } |
766 | |
767 | if (wc == WEOF) |
768 | pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx; |
769 | if (wc == WEOF) |
770 | pstr->tip_context |
771 | = re_string_context_at (pstr, prev_valid_len - 1, eflags); |
772 | else |
773 | pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0)__builtin_expect (pstr->word_ops_used != 0, 0) |
774 | && IS_WIDE_WORD_CHAR (wc)(iswalnum (wc) || (wc) == L'_')) |
775 | ? CONTEXT_WORD1 |
776 | : ((IS_WIDE_NEWLINE (wc)((wc) == L'\n') |
777 | && pstr->newline_anchor) |
778 | ? CONTEXT_NEWLINE(1 << 1) : 0)); |
779 | if (BE (pstr->valid_len, 0)__builtin_expect (pstr->valid_len, 0)) |
780 | { |
781 | for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx) |
782 | pstr->wcs[wcs_idx] = WEOF; |
783 | if (pstr->mbs_allocated) |
784 | memset (pstr->mbs, 255, pstr->valid_len)__builtin___memset_chk (pstr->mbs, 255, pstr->valid_len , __builtin_object_size (pstr->mbs, 0)); |
785 | } |
786 | pstr->valid_raw_len = pstr->valid_len; |
787 | } |
788 | else |
789 | #endif /* RE_ENABLE_I18N */ |
790 | { |
791 | int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1]; |
792 | pstr->valid_raw_len = 0; |
793 | if (pstr->trans) |
794 | c = pstr->trans[c]; |
795 | pstr->tip_context = (bitset_contain (pstr->word_char, c)(pstr->word_char[c / (sizeof (bitset_word_t) * 8)] & ( (bitset_word_t) 1 << c % (sizeof (bitset_word_t) * 8))) |
796 | ? CONTEXT_WORD1 |
797 | : ((IS_NEWLINE (c)((c) == '\n') && pstr->newline_anchor) |
798 | ? CONTEXT_NEWLINE(1 << 1) : 0)); |
799 | } |
800 | } |
801 | if (!BE (pstr->mbs_allocated, 0)__builtin_expect (pstr->mbs_allocated, 0)) |
802 | pstr->mbs += offset; |
803 | } |
804 | pstr->raw_mbs_idx = idx; |
805 | pstr->len -= offset; |
806 | pstr->stop -= offset; |
807 | |
808 | /* Then build the buffers. */ |
809 | #ifdef RE_ENABLE_I18N |
810 | if (pstr->mb_cur_max > 1) |
811 | { |
812 | if (pstr->icase) |
813 | { |
814 | reg_errcode_t ret = build_wcs_upper_buffer (pstr); |
815 | if (BE (ret != REG_NOERROR, 0)__builtin_expect (ret != REG_NOERROR, 0)) |
816 | return ret; |
817 | } |
818 | else |
819 | build_wcs_buffer (pstr); |
820 | } |
821 | else |
822 | #endif /* RE_ENABLE_I18N */ |
823 | if (BE (pstr->mbs_allocated, 0)__builtin_expect (pstr->mbs_allocated, 0)) |
824 | { |
825 | if (pstr->icase) |
826 | build_upper_buffer (pstr); |
827 | else if (pstr->trans != NULL((void*)0)) |
828 | re_string_translate_buffer (pstr); |
829 | } |
830 | else |
831 | pstr->valid_len = pstr->len; |
832 | |
833 | pstr->cur_idx = 0; |
834 | return REG_NOERROR; |
835 | } |
836 | |
837 | static unsigned char |
838 | internal_function __attribute ((pure))__attribute__ ((pure)) |
839 | re_string_peek_byte_case (const re_string_t *pstr, int idx) |
840 | { |
841 | int ch, off; |
842 | |
843 | /* Handle the common (easiest) cases first. */ |
844 | if (BE (!pstr->mbs_allocated, 1)__builtin_expect (!pstr->mbs_allocated, 1)) |
845 | return re_string_peek_byte (pstr, idx)((pstr)->mbs[(pstr)->cur_idx + idx]); |
846 | |
847 | #ifdef RE_ENABLE_I18N |
848 | if (pstr->mb_cur_max > 1 |
849 | && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx)((pstr)->wcs[pstr->cur_idx + idx] != WEOF && (( pstr)->valid_len == (pstr->cur_idx + idx) + 1 || (pstr) ->wcs[(pstr->cur_idx + idx) + 1] != WEOF))) |
850 | return re_string_peek_byte (pstr, idx)((pstr)->mbs[(pstr)->cur_idx + idx]); |
851 | #endif |
852 | |
853 | off = pstr->cur_idx + idx; |
854 | #ifdef RE_ENABLE_I18N |
855 | if (pstr->offsets_needed) |
856 | off = pstr->offsets[off]; |
857 | #endif |
858 | |
859 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; |
860 | |
861 | #ifdef RE_ENABLE_I18N |
862 | /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I |
863 | this function returns CAPITAL LETTER I instead of first byte of |
864 | DOTLESS SMALL LETTER I. The latter would confuse the parser, |
865 | since peek_byte_case doesn't advance cur_idx in any way. */ |
866 | if (pstr->offsets_needed && !isascii (ch)) |
867 | return re_string_peek_byte (pstr, idx)((pstr)->mbs[(pstr)->cur_idx + idx]); |
868 | #endif |
869 | |
870 | return ch; |
871 | } |
872 | |
873 | static unsigned char |
874 | internal_function __attribute ((pure))__attribute__ ((pure)) |
875 | re_string_fetch_byte_case (re_string_t *pstr) |
876 | { |
877 | if (BE (!pstr->mbs_allocated, 1)__builtin_expect (!pstr->mbs_allocated, 1)) |
878 | return re_string_fetch_byte (pstr)((pstr)->mbs[(pstr)->cur_idx++]); |
879 | |
880 | #ifdef RE_ENABLE_I18N |
881 | if (pstr->offsets_needed) |
882 | { |
883 | int off, ch; |
884 | |
885 | /* For tr_TR.UTF-8 [[:islower:]] there is |
886 | [[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip |
887 | in that case the whole multi-byte character and return |
888 | the original letter. On the other side, with |
889 | [[: DOTLESS SMALL LETTER I return [[:I, as doing |
890 | anything else would complicate things too much. */ |
891 | |
892 | if (!re_string_first_byte (pstr, pstr->cur_idx)((pstr->cur_idx) == (pstr)->valid_len || (pstr)->wcs [pstr->cur_idx] != WEOF)) |
893 | return re_string_fetch_byte (pstr)((pstr)->mbs[(pstr)->cur_idx++]); |
894 | |
895 | off = pstr->offsets[pstr->cur_idx]; |
896 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; |
897 | |
898 | if (! isascii (ch)) |
899 | return re_string_fetch_byte (pstr)((pstr)->mbs[(pstr)->cur_idx++]); |
900 | |
901 | re_string_skip_bytes (pstr,((pstr)->cur_idx += (re_string_char_size_at (pstr, pstr-> cur_idx))) |
902 | re_string_char_size_at (pstr, pstr->cur_idx))((pstr)->cur_idx += (re_string_char_size_at (pstr, pstr-> cur_idx))); |
903 | return ch; |
904 | } |
905 | #endif |
906 | |
907 | return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++]; |
908 | } |
909 | |
910 | static void |
911 | internal_function |
912 | re_string_destruct (re_string_t *pstr) |
913 | { |
914 | #ifdef RE_ENABLE_I18N |
915 | re_free (pstr->wcs)free (pstr->wcs); |
916 | re_free (pstr->offsets)free (pstr->offsets); |
917 | #endif /* RE_ENABLE_I18N */ |
918 | if (pstr->mbs_allocated) |
919 | re_free (pstr->mbs)free (pstr->mbs); |
920 | } |
921 | |
922 | /* Return the context at IDX in INPUT. */ |
923 | |
924 | static unsigned int |
925 | internal_function |
926 | re_string_context_at (const re_string_t *input, int idx, int eflags) |
927 | { |
928 | int c; |
929 | if (BE (idx < 0, 0)__builtin_expect (idx < 0, 0)) |
930 | /* In this case, we use the value stored in input->tip_context, |
931 | since we can't know the character in input->mbs[-1] here. */ |
932 | return input->tip_context; |
933 | if (BE (idx == input->len, 0)__builtin_expect (idx == input->len, 0)) |
934 | return ((eflags & REG_NOTEOL(1 << 1)) ? CONTEXT_ENDBUF(((1 << 1) << 1) << 1) |
935 | : CONTEXT_NEWLINE(1 << 1) | CONTEXT_ENDBUF(((1 << 1) << 1) << 1)); |
936 | #ifdef RE_ENABLE_I18N |
937 | if (input->mb_cur_max > 1) |
938 | { |
939 | wint_t wc; |
940 | int wc_idx = idx; |
941 | while(input->wcs[wc_idx] == WEOF) |
942 | { |
943 | #ifdef DEBUG |
944 | /* It must not happen. */ |
945 | assert (wc_idx >= 0)(__builtin_expect(!(wc_idx >= 0), 0) ? __assert_rtn(__func__ , "compat/regex/regex_internal.c", 945, "wc_idx >= 0") : ( void)0); |
946 | #endif |
947 | --wc_idx; |
948 | if (wc_idx < 0) |
949 | return input->tip_context; |
950 | } |
951 | wc = input->wcs[wc_idx]; |
952 | if (BE (input->word_ops_used != 0, 0)__builtin_expect (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc)(iswalnum (wc) || (wc) == L'_')) |
953 | return CONTEXT_WORD1; |
954 | return (IS_WIDE_NEWLINE (wc)((wc) == L'\n') && input->newline_anchor |
955 | ? CONTEXT_NEWLINE(1 << 1) : 0); |
956 | } |
957 | else |
958 | #endif |
959 | { |
960 | c = re_string_byte_at (input, idx)((input)->mbs[idx]); |
961 | if (bitset_contain (input->word_char, c)(input->word_char[c / (sizeof (bitset_word_t) * 8)] & ( (bitset_word_t) 1 << c % (sizeof (bitset_word_t) * 8)))) |
962 | return CONTEXT_WORD1; |
963 | return IS_NEWLINE (c)((c) == '\n') && input->newline_anchor ? CONTEXT_NEWLINE(1 << 1) : 0; |
964 | } |
965 | } |
966 | |
967 | /* Functions for set operation. */ |
968 | |
969 | static reg_errcode_t |
970 | internal_function |
971 | re_node_set_alloc (re_node_set *set, int size) |
972 | { |
973 | /* |
974 | * ADR: valgrind says size can be 0, which then doesn't |
975 | * free the block of size 0. Harumph. This seems |
976 | * to work ok, though. |
977 | */ |
978 | if (size == 0) |
979 | { |
980 | memset(set, 0, sizeof(*set))__builtin___memset_chk (set, 0, sizeof(*set), __builtin_object_size (set, 0)); |
981 | return REG_NOERROR; |
982 | } |
983 | set->alloc = size; |
984 | set->nelem = 0; |
985 | set->elems = re_malloc (int, size)((int *) malloc ((size) * sizeof (int))); |
986 | if (BE (set->elems == NULL, 0)__builtin_expect (set->elems == ((void*)0), 0)) |
987 | return REG_ESPACE; |
988 | return REG_NOERROR; |
989 | } |
990 | |
991 | static reg_errcode_t |
992 | internal_function |
993 | re_node_set_init_1 (re_node_set *set, int elem) |
994 | { |
995 | set->alloc = 1; |
996 | set->nelem = 1; |
997 | set->elems = re_malloc (int, 1)((int *) malloc ((1) * sizeof (int))); |
998 | if (BE (set->elems == NULL, 0)__builtin_expect (set->elems == ((void*)0), 0)) |
999 | { |
1000 | set->alloc = set->nelem = 0; |
1001 | return REG_ESPACE; |
1002 | } |
1003 | set->elems[0] = elem; |
1004 | return REG_NOERROR; |
1005 | } |
1006 | |
1007 | static reg_errcode_t |
1008 | internal_function |
1009 | re_node_set_init_2 (re_node_set *set, int elem1, int elem2) |
1010 | { |
1011 | set->alloc = 2; |
1012 | set->elems = re_malloc (int, 2)((int *) malloc ((2) * sizeof (int))); |
1013 | if (BE (set->elems == NULL, 0)__builtin_expect (set->elems == ((void*)0), 0)) |
1014 | return REG_ESPACE; |
1015 | if (elem1 == elem2) |
1016 | { |
1017 | set->nelem = 1; |
1018 | set->elems[0] = elem1; |
1019 | } |
1020 | else |
1021 | { |
1022 | set->nelem = 2; |
1023 | if (elem1 < elem2) |
1024 | { |
1025 | set->elems[0] = elem1; |
1026 | set->elems[1] = elem2; |
1027 | } |
1028 | else |
1029 | { |
1030 | set->elems[0] = elem2; |
1031 | set->elems[1] = elem1; |
1032 | } |
1033 | } |
1034 | return REG_NOERROR; |
1035 | } |
1036 | |
1037 | static reg_errcode_t |
1038 | internal_function |
1039 | re_node_set_init_copy (re_node_set *dest, const re_node_set *src) |
1040 | { |
1041 | dest->nelem = src->nelem; |
1042 | if (src->nelem > 0) |
1043 | { |
1044 | dest->alloc = dest->nelem; |
1045 | dest->elems = re_malloc (int, dest->alloc)((int *) malloc ((dest->alloc) * sizeof (int))); |
1046 | if (BE (dest->elems == NULL, 0)__builtin_expect (dest->elems == ((void*)0), 0)) |
1047 | { |
1048 | dest->alloc = dest->nelem = 0; |
1049 | return REG_ESPACE; |
1050 | } |
1051 | memcpy (dest->elems, src->elems, src->nelem * sizeof (int))__builtin___memcpy_chk (dest->elems, src->elems, src-> nelem * sizeof (int), __builtin_object_size (dest->elems, 0 )); |
1052 | } |
1053 | else |
1054 | re_node_set_init_empty (dest)__builtin___memset_chk (dest, '\0', sizeof (re_node_set), __builtin_object_size (dest, 0)); |
1055 | return REG_NOERROR; |
1056 | } |
1057 | |
1058 | /* Calculate the intersection of the sets SRC1 and SRC2. And merge it to |
1059 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. |
1060 | Note: We assume dest->elems is NULL, when dest->alloc is 0. */ |
1061 | |
1062 | static reg_errcode_t |
1063 | internal_function |
1064 | re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1, |
1065 | const re_node_set *src2) |
1066 | { |
1067 | int i1, i2, is, id, delta, sbase; |
1068 | if (src1->nelem == 0 || src2->nelem == 0) |
1069 | return REG_NOERROR; |
1070 | |
1071 | /* We need dest->nelem + 2 * elems_in_intersection; this is a |
1072 | conservative estimate. */ |
1073 | if (src1->nelem + src2->nelem + dest->nelem > dest->alloc) |
1074 | { |
1075 | int new_alloc = src1->nelem + src2->nelem + dest->alloc; |
1076 | int *new_elems = re_realloc (dest->elems, int, new_alloc)((dest->elems != ((void*)0)) ? (int *) realloc (dest->elems ,(new_alloc)*sizeof(int)) : (int *) calloc(new_alloc,sizeof(int ))); |
1077 | if (BE (new_elems == NULL, 0)__builtin_expect (new_elems == ((void*)0), 0)) |
1078 | return REG_ESPACE; |
1079 | dest->elems = new_elems; |
1080 | dest->alloc = new_alloc; |
1081 | } |
1082 | |
1083 | /* Find the items in the intersection of SRC1 and SRC2, and copy |
1084 | into the top of DEST those that are not already in DEST itself. */ |
1085 | sbase = dest->nelem + src1->nelem + src2->nelem; |
1086 | i1 = src1->nelem - 1; |
1087 | i2 = src2->nelem - 1; |
1088 | id = dest->nelem - 1; |
1089 | for (;;) |
1090 | { |
1091 | if (src1->elems[i1] == src2->elems[i2]) |
1092 | { |
1093 | /* Try to find the item in DEST. Maybe we could binary search? */ |
1094 | while (id >= 0 && dest->elems[id] > src1->elems[i1]) |
1095 | --id; |
1096 | |
1097 | if (id < 0 || dest->elems[id] != src1->elems[i1]) |
1098 | dest->elems[--sbase] = src1->elems[i1]; |
1099 | |
1100 | if (--i1 < 0 || --i2 < 0) |
1101 | break; |
1102 | } |
1103 | |
1104 | /* Lower the highest of the two items. */ |
1105 | else if (src1->elems[i1] < src2->elems[i2]) |
1106 | { |
1107 | if (--i2 < 0) |
1108 | break; |
1109 | } |
1110 | else |
1111 | { |
1112 | if (--i1 < 0) |
1113 | break; |
1114 | } |
1115 | } |
1116 | |
1117 | id = dest->nelem - 1; |
1118 | is = dest->nelem + src1->nelem + src2->nelem - 1; |
1119 | delta = is - sbase + 1; |
1120 | |
1121 | /* Now copy. When DELTA becomes zero, the remaining |
1122 | DEST elements are already in place; this is more or |
1123 | less the same loop that is in re_node_set_merge. */ |
1124 | dest->nelem += delta; |
1125 | if (delta > 0 && id >= 0) |
1126 | for (;;) |
1127 | { |
1128 | if (dest->elems[is] > dest->elems[id]) |
1129 | { |
1130 | /* Copy from the top. */ |
1131 | dest->elems[id + delta--] = dest->elems[is--]; |
1132 | if (delta == 0) |
1133 | break; |
1134 | } |
1135 | else |
1136 | { |
1137 | /* Slide from the bottom. */ |
1138 | dest->elems[id + delta] = dest->elems[id]; |
1139 | if (--id < 0) |
1140 | break; |
1141 | } |
1142 | } |
1143 | |
1144 | /* Copy remaining SRC elements. */ |
1145 | memcpy (dest->elems, dest->elems + sbase, delta * sizeof (int))__builtin___memcpy_chk (dest->elems, dest->elems + sbase , delta * sizeof (int), __builtin_object_size (dest->elems , 0)); |
1146 | |
1147 | return REG_NOERROR; |
1148 | } |
1149 | |
1150 | /* Calculate the union set of the sets SRC1 and SRC2. And store it to |
1151 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ |
1152 | |
1153 | static reg_errcode_t |
1154 | internal_function |
1155 | re_node_set_init_union (re_node_set *dest, const re_node_set *src1, |
1156 | const re_node_set *src2) |
1157 | { |
1158 | int i1, i2, id; |
1159 | if (src1 != NULL((void*)0) && src1->nelem > 0 && src2 != NULL((void*)0) && src2->nelem > 0) |
1160 | { |
1161 | dest->alloc = src1->nelem + src2->nelem; |
1162 | dest->elems = re_malloc (int, dest->alloc)((int *) malloc ((dest->alloc) * sizeof (int))); |
1163 | if (BE (dest->elems == NULL, 0)__builtin_expect (dest->elems == ((void*)0), 0)) |
1164 | return REG_ESPACE; |
1165 | } |
1166 | else |
1167 | { |
1168 | if (src1 != NULL((void*)0) && src1->nelem > 0) |
1169 | return re_node_set_init_copy (dest, src1); |
1170 | else if (src2 != NULL((void*)0) && src2->nelem > 0) |
1171 | return re_node_set_init_copy (dest, src2); |
1172 | else |
1173 | re_node_set_init_empty (dest)__builtin___memset_chk (dest, '\0', sizeof (re_node_set), __builtin_object_size (dest, 0)); |
1174 | return REG_NOERROR; |
1175 | } |
1176 | for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;) |
1177 | { |
1178 | if (src1->elems[i1] > src2->elems[i2]) |
1179 | { |
1180 | dest->elems[id++] = src2->elems[i2++]; |
1181 | continue; |
1182 | } |
1183 | if (src1->elems[i1] == src2->elems[i2]) |
1184 | ++i2; |
1185 | dest->elems[id++] = src1->elems[i1++]; |
1186 | } |
1187 | if (i1 < src1->nelem) |
1188 | { |
1189 | memcpy (dest->elems + id, src1->elems + i1,__builtin___memcpy_chk (dest->elems + id, src1->elems + i1, (src1->nelem - i1) * sizeof (int), __builtin_object_size (dest->elems + id, 0)) |
1190 | (src1->nelem - i1) * sizeof (int))__builtin___memcpy_chk (dest->elems + id, src1->elems + i1, (src1->nelem - i1) * sizeof (int), __builtin_object_size (dest->elems + id, 0)); |
1191 | id += src1->nelem - i1; |
1192 | } |
1193 | else if (i2 < src2->nelem) |
1194 | { |
1195 | memcpy (dest->elems + id, src2->elems + i2,__builtin___memcpy_chk (dest->elems + id, src2->elems + i2, (src2->nelem - i2) * sizeof (int), __builtin_object_size (dest->elems + id, 0)) |
1196 | (src2->nelem - i2) * sizeof (int))__builtin___memcpy_chk (dest->elems + id, src2->elems + i2, (src2->nelem - i2) * sizeof (int), __builtin_object_size (dest->elems + id, 0)); |
1197 | id += src2->nelem - i2; |
1198 | } |
1199 | dest->nelem = id; |
1200 | return REG_NOERROR; |
1201 | } |
1202 | |
1203 | /* Calculate the union set of the sets DEST and SRC. And store it to |
1204 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ |
1205 | |
1206 | static reg_errcode_t |
1207 | internal_function |
1208 | re_node_set_merge (re_node_set *dest, const re_node_set *src) |
1209 | { |
1210 | int is, id, sbase, delta; |
1211 | if (src == NULL((void*)0) || src->nelem == 0) |
1212 | return REG_NOERROR; |
1213 | if (dest->alloc < 2 * src->nelem + dest->nelem) |
1214 | { |
1215 | int new_alloc = 2 * (src->nelem + dest->alloc); |
1216 | int *new_buffer = re_realloc (dest->elems, int, new_alloc)((dest->elems != ((void*)0)) ? (int *) realloc (dest->elems ,(new_alloc)*sizeof(int)) : (int *) calloc(new_alloc,sizeof(int ))); |
1217 | if (BE (new_buffer == NULL, 0)__builtin_expect (new_buffer == ((void*)0), 0)) |
1218 | return REG_ESPACE; |
1219 | dest->elems = new_buffer; |
1220 | dest->alloc = new_alloc; |
1221 | } |
1222 | |
1223 | if (BE (dest->nelem == 0, 0)__builtin_expect (dest->nelem == 0, 0)) |
1224 | { |
1225 | dest->nelem = src->nelem; |
1226 | memcpy (dest->elems, src->elems, src->nelem * sizeof (int))__builtin___memcpy_chk (dest->elems, src->elems, src-> nelem * sizeof (int), __builtin_object_size (dest->elems, 0 )); |
1227 | return REG_NOERROR; |
1228 | } |
1229 | |
1230 | /* Copy into the top of DEST the items of SRC that are not |
1231 | found in DEST. Maybe we could binary search in DEST? */ |
1232 | for (sbase = dest->nelem + 2 * src->nelem, |
1233 | is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; ) |
1234 | { |
1235 | if (dest->elems[id] == src->elems[is]) |
1236 | is--, id--; |
1237 | else if (dest->elems[id] < src->elems[is]) |
1238 | dest->elems[--sbase] = src->elems[is--]; |
1239 | else /* if (dest->elems[id] > src->elems[is]) */ |
1240 | --id; |
1241 | } |
1242 | |
1243 | if (is >= 0) |
1244 | { |
1245 | /* If DEST is exhausted, the remaining items of SRC must be unique. */ |
1246 | sbase -= is + 1; |
1247 | memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (int))__builtin___memcpy_chk (dest->elems + sbase, src->elems , (is + 1) * sizeof (int), __builtin_object_size (dest->elems + sbase, 0)); |
1248 | } |
1249 | |
1250 | id = dest->nelem - 1; |
1251 | is = dest->nelem + 2 * src->nelem - 1; |
1252 | delta = is - sbase + 1; |
1253 | if (delta == 0) |
1254 | return REG_NOERROR; |
1255 | |
1256 | /* Now copy. When DELTA becomes zero, the remaining |
1257 | DEST elements are already in place. */ |
1258 | dest->nelem += delta; |
1259 | for (;;) |
1260 | { |
1261 | if (dest->elems[is] > dest->elems[id]) |
1262 | { |
1263 | /* Copy from the top. */ |
1264 | dest->elems[id + delta--] = dest->elems[is--]; |
1265 | if (delta == 0) |
1266 | break; |
1267 | } |
1268 | else |
1269 | { |
1270 | /* Slide from the bottom. */ |
1271 | dest->elems[id + delta] = dest->elems[id]; |
1272 | if (--id < 0) |
1273 | { |
1274 | /* Copy remaining SRC elements. */ |
1275 | memcpy (dest->elems, dest->elems + sbase,__builtin___memcpy_chk (dest->elems, dest->elems + sbase , delta * sizeof (int), __builtin_object_size (dest->elems , 0)) |
1276 | delta * sizeof (int))__builtin___memcpy_chk (dest->elems, dest->elems + sbase , delta * sizeof (int), __builtin_object_size (dest->elems , 0)); |
1277 | break; |
1278 | } |
1279 | } |
1280 | } |
1281 | |
1282 | return REG_NOERROR; |
1283 | } |
1284 | |
1285 | /* Insert the new element ELEM to the re_node_set* SET. |
1286 | SET should not already have ELEM. |
1287 | return -1 if an error has occurred, return 1 otherwise. */ |
1288 | |
1289 | static int |
1290 | internal_function |
1291 | re_node_set_insert (re_node_set *set, int elem) |
1292 | { |
1293 | int idx; |
1294 | /* In case the set is empty. */ |
1295 | if (set->alloc == 0) |
1296 | { |
1297 | if (BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1)__builtin_expect (re_node_set_init_1 (set, elem) == REG_NOERROR , 1)) |
1298 | return 1; |
1299 | else |
1300 | return -1; |
1301 | } |
1302 | |
1303 | if (BE (set->nelem, 0)__builtin_expect (set->nelem, 0) == 0) |
1304 | { |
1305 | /* We already guaranteed above that set->alloc != 0. */ |
1306 | set->elems[0] = elem; |
1307 | ++set->nelem; |
1308 | return 1; |
1309 | } |
1310 | |
1311 | /* Realloc if we need. */ |
1312 | if (set->alloc == set->nelem) |
1313 | { |
1314 | int *new_elems; |
1315 | set->alloc = set->alloc * 2; |
1316 | new_elems = re_realloc (set->elems, int, set->alloc)((set->elems != ((void*)0)) ? (int *) realloc (set->elems ,(set->alloc)*sizeof(int)) : (int *) calloc(set->alloc, sizeof(int))); |
1317 | if (BE (new_elems == NULL, 0)__builtin_expect (new_elems == ((void*)0), 0)) |
1318 | return -1; |
1319 | set->elems = new_elems; |
1320 | } |
1321 | |
1322 | /* Move the elements which follows the new element. Test the |
1323 | first element separately to skip a check in the inner loop. */ |
1324 | if (elem < set->elems[0]) |
1325 | { |
1326 | idx = 0; |
Value stored to 'idx' is never read | |
1327 | for (idx = set->nelem; idx > 0; idx--) |
1328 | set->elems[idx] = set->elems[idx - 1]; |
1329 | } |
1330 | else |
1331 | { |
1332 | for (idx = set->nelem; set->elems[idx - 1] > elem; idx--) |
1333 | set->elems[idx] = set->elems[idx - 1]; |
1334 | } |
1335 | |
1336 | /* Insert the new element. */ |
1337 | set->elems[idx] = elem; |
1338 | ++set->nelem; |
1339 | return 1; |
1340 | } |
1341 | |
1342 | /* Insert the new element ELEM to the re_node_set* SET. |
1343 | SET should not already have any element greater than or equal to ELEM. |
1344 | Return -1 if an error has occurred, return 1 otherwise. */ |
1345 | |
1346 | static int |
1347 | internal_function |
1348 | re_node_set_insert_last (re_node_set *set, int elem) |
1349 | { |
1350 | /* Realloc if we need. */ |
1351 | if (set->alloc == set->nelem) |
1352 | { |
1353 | int *new_elems; |
1354 | set->alloc = (set->alloc + 1) * 2; |
1355 | new_elems = re_realloc (set->elems, int, set->alloc)((set->elems != ((void*)0)) ? (int *) realloc (set->elems ,(set->alloc)*sizeof(int)) : (int *) calloc(set->alloc, sizeof(int))); |
1356 | if (BE (new_elems == NULL, 0)__builtin_expect (new_elems == ((void*)0), 0)) |
1357 | return -1; |
1358 | set->elems = new_elems; |
1359 | } |
1360 | |
1361 | /* Insert the new element. */ |
1362 | set->elems[set->nelem++] = elem; |
1363 | return 1; |
1364 | } |
1365 | |
1366 | /* Compare two node sets SET1 and SET2. |
1367 | return 1 if SET1 and SET2 are equivalent, return 0 otherwise. */ |
1368 | |
1369 | static int |
1370 | internal_function __attribute ((pure))__attribute__ ((pure)) |
1371 | re_node_set_compare (const re_node_set *set1, const re_node_set *set2) |
1372 | { |
1373 | int i; |
1374 | if (set1 == NULL((void*)0) || set2 == NULL((void*)0) || set1->nelem != set2->nelem) |
1375 | return 0; |
1376 | for (i = set1->nelem ; --i >= 0 ; ) |
1377 | if (set1->elems[i] != set2->elems[i]) |
1378 | return 0; |
1379 | return 1; |
1380 | } |
1381 | |
1382 | /* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */ |
1383 | |
1384 | static int |
1385 | internal_function __attribute ((pure))__attribute__ ((pure)) |
1386 | re_node_set_contains (const re_node_set *set, int elem) |
1387 | { |
1388 | unsigned int idx, right, mid; |
1389 | if (set->nelem <= 0) |
1390 | return 0; |
1391 | |
1392 | /* Binary search the element. */ |
1393 | idx = 0; |
1394 | right = set->nelem - 1; |
1395 | while (idx < right) |
1396 | { |
1397 | mid = (idx + right) / 2; |
1398 | if (set->elems[mid] < elem) |
1399 | idx = mid + 1; |
1400 | else |
1401 | right = mid; |
1402 | } |
1403 | return set->elems[idx] == elem ? idx + 1 : 0; |
1404 | } |
1405 | |
1406 | static void |
1407 | internal_function |
1408 | re_node_set_remove_at (re_node_set *set, int idx) |
1409 | { |
1410 | if (idx < 0 || idx >= set->nelem) |
1411 | return; |
1412 | --set->nelem; |
1413 | for (; idx < set->nelem; idx++) |
1414 | set->elems[idx] = set->elems[idx + 1]; |
1415 | } |
1416 | |
1417 | |
1418 | /* Add the token TOKEN to dfa->nodes, and return the index of the token. |
1419 | Or return -1, if an error has occurred. */ |
1420 | |
1421 | static int |
1422 | internal_function |
1423 | re_dfa_add_node (re_dfa_t *dfa, re_token_t token) |
1424 | { |
1425 | if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0)__builtin_expect (dfa->nodes_len >= dfa->nodes_alloc , 0)) |
1426 | { |
1427 | size_t new_nodes_alloc = dfa->nodes_alloc * 2; |
1428 | int *new_nexts, *new_indices; |
1429 | re_node_set *new_edests, *new_eclosures; |
1430 | re_token_t *new_nodes; |
1431 | |
1432 | /* Avoid overflows in realloc. */ |
1433 | const size_t max_object_size = MAX (sizeof (re_token_t), |
1434 | MAX (sizeof (re_node_set), |
1435 | sizeof (int))); |
1436 | if (BE (SIZE_MAX / max_object_size < new_nodes_alloc, 0)__builtin_expect (18446744073709551615ULL / max_object_size < new_nodes_alloc, 0)) |
1437 | return -1; |
1438 | |
1439 | new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc)((dfa->nodes != ((void*)0)) ? (re_token_t *) realloc (dfa-> nodes,(new_nodes_alloc)*sizeof(re_token_t)) : (re_token_t *) calloc (new_nodes_alloc,sizeof(re_token_t))); |
1440 | if (BE (new_nodes == NULL, 0)__builtin_expect (new_nodes == ((void*)0), 0)) |
1441 | return -1; |
1442 | dfa->nodes = new_nodes; |
1443 | new_nexts = re_realloc (dfa->nexts, int, new_nodes_alloc)((dfa->nexts != ((void*)0)) ? (int *) realloc (dfa->nexts ,(new_nodes_alloc)*sizeof(int)) : (int *) calloc(new_nodes_alloc ,sizeof(int))); |
1444 | new_indices = re_realloc (dfa->org_indices, int, new_nodes_alloc)((dfa->org_indices != ((void*)0)) ? (int *) realloc (dfa-> org_indices,(new_nodes_alloc)*sizeof(int)) : (int *) calloc(new_nodes_alloc ,sizeof(int))); |
1445 | new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc)((dfa->edests != ((void*)0)) ? (re_node_set *) realloc (dfa ->edests,(new_nodes_alloc)*sizeof(re_node_set)) : (re_node_set *) calloc(new_nodes_alloc,sizeof(re_node_set))); |
1446 | new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc)((dfa->eclosures != ((void*)0)) ? (re_node_set *) realloc ( dfa->eclosures,(new_nodes_alloc)*sizeof(re_node_set)) : (re_node_set *) calloc(new_nodes_alloc,sizeof(re_node_set))); |
1447 | if (BE (new_nexts == NULL || new_indices == NULL__builtin_expect (new_nexts == ((void*)0) || new_indices == ( (void*)0) || new_edests == ((void*)0) || new_eclosures == ((void *)0), 0) |
1448 | || new_edests == NULL || new_eclosures == NULL, 0)__builtin_expect (new_nexts == ((void*)0) || new_indices == ( (void*)0) || new_edests == ((void*)0) || new_eclosures == ((void *)0), 0)) |
1449 | return -1; |
1450 | dfa->nexts = new_nexts; |
1451 | dfa->org_indices = new_indices; |
1452 | dfa->edests = new_edests; |
1453 | dfa->eclosures = new_eclosures; |
1454 | dfa->nodes_alloc = new_nodes_alloc; |
1455 | } |
1456 | dfa->nodes[dfa->nodes_len] = token; |
1457 | dfa->nodes[dfa->nodes_len].constraint = 0; |
1458 | #ifdef RE_ENABLE_I18N |
1459 | dfa->nodes[dfa->nodes_len].accept_mb = |
1460 | (token.type == OP_PERIOD && dfa->mb_cur_max > 1) || token.type == COMPLEX_BRACKET; |
1461 | #endif |
1462 | dfa->nexts[dfa->nodes_len] = -1; |
1463 | re_node_set_init_empty (dfa->edests + dfa->nodes_len)__builtin___memset_chk (dfa->edests + dfa->nodes_len, '\0' , sizeof (re_node_set), __builtin_object_size (dfa->edests + dfa->nodes_len, 0)); |
1464 | re_node_set_init_empty (dfa->eclosures + dfa->nodes_len)__builtin___memset_chk (dfa->eclosures + dfa->nodes_len , '\0', sizeof (re_node_set), __builtin_object_size (dfa-> eclosures + dfa->nodes_len, 0)); |
1465 | return dfa->nodes_len++; |
1466 | } |
1467 | |
1468 | static inline unsigned int |
1469 | internal_function |
1470 | calc_state_hash (const re_node_set *nodes, unsigned int context) |
1471 | { |
1472 | unsigned int hash = nodes->nelem + context; |
1473 | int i; |
1474 | for (i = 0 ; i < nodes->nelem ; i++) |
1475 | hash += nodes->elems[i]; |
1476 | return hash; |
1477 | } |
1478 | |
1479 | /* Search for the state whose node_set is equivalent to NODES. |
1480 | Return the pointer to the state, if we found it in the DFA. |
1481 | Otherwise create the new one and return it. In case of an error |
1482 | return NULL and set the error code in ERR. |
1483 | Note: - We assume NULL as the invalid state, then it is possible that |
1484 | return value is NULL and ERR is REG_NOERROR. |
1485 | - We never return non-NULL value in case of any errors, it is for |
1486 | optimization. */ |
1487 | |
1488 | static re_dfastate_t * |
1489 | internal_function |
1490 | re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa, |
1491 | const re_node_set *nodes) |
1492 | { |
1493 | unsigned int hash; |
1494 | re_dfastate_t *new_state; |
1495 | struct re_state_table_entry *spot; |
1496 | int i; |
1497 | if (BE (nodes->nelem == 0, 0)__builtin_expect (nodes->nelem == 0, 0)) |
1498 | { |
1499 | *err = REG_NOERROR; |
1500 | return NULL((void*)0); |
1501 | } |
1502 | hash = calc_state_hash (nodes, 0); |
1503 | spot = dfa->state_table + (hash & dfa->state_hash_mask); |
1504 | |
1505 | for (i = 0 ; i < spot->num ; i++) |
1506 | { |
1507 | re_dfastate_t *state = spot->array[i]; |
1508 | if (hash != state->hash) |
1509 | continue; |
1510 | if (re_node_set_compare (&state->nodes, nodes)) |
1511 | return state; |
1512 | } |
1513 | |
1514 | /* There are no appropriate state in the dfa, create the new one. */ |
1515 | new_state = create_ci_newstate (dfa, nodes, hash); |
1516 | if (BE (new_state == NULL, 0)__builtin_expect (new_state == ((void*)0), 0)) |
1517 | *err = REG_ESPACE; |
1518 | |
1519 | return new_state; |
1520 | } |
1521 | |
1522 | /* Search for the state whose node_set is equivalent to NODES and |
1523 | whose context is equivalent to CONTEXT. |
1524 | Return the pointer to the state, if we found it in the DFA. |
1525 | Otherwise create the new one and return it. In case of an error |
1526 | return NULL and set the error code in ERR. |
1527 | Note: - We assume NULL as the invalid state, then it is possible that |
1528 | return value is NULL and ERR is REG_NOERROR. |
1529 | - We never return non-NULL value in case of any errors, it is for |
1530 | optimization. */ |
1531 | |
1532 | static re_dfastate_t * |
1533 | internal_function |
1534 | re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa, |
1535 | const re_node_set *nodes, unsigned int context) |
1536 | { |
1537 | unsigned int hash; |
1538 | re_dfastate_t *new_state; |
1539 | struct re_state_table_entry *spot; |
1540 | int i; |
1541 | if (nodes->nelem == 0) |
1542 | { |
1543 | *err = REG_NOERROR; |
1544 | return NULL((void*)0); |
1545 | } |
1546 | hash = calc_state_hash (nodes, context); |
1547 | spot = dfa->state_table + (hash & dfa->state_hash_mask); |
1548 | |
1549 | for (i = 0 ; i < spot->num ; i++) |
1550 | { |
1551 | re_dfastate_t *state = spot->array[i]; |
1552 | if (state->hash == hash |
1553 | && state->context == context |
1554 | && re_node_set_compare (state->entrance_nodes, nodes)) |
1555 | return state; |
1556 | } |
1557 | /* There are no appropriate state in `dfa', create the new one. */ |
1558 | new_state = create_cd_newstate (dfa, nodes, context, hash); |
1559 | if (BE (new_state == NULL, 0)__builtin_expect (new_state == ((void*)0), 0)) |
1560 | *err = REG_ESPACE; |
1561 | |
1562 | return new_state; |
1563 | } |
1564 | |
1565 | /* Finish initialization of the new state NEWSTATE, and using its hash value |
1566 | HASH put in the appropriate bucket of DFA's state table. Return value |
1567 | indicates the error code if failed. */ |
1568 | |
1569 | static reg_errcode_t |
1570 | register_state (const re_dfa_t *dfa, re_dfastate_t *newstate, |
1571 | unsigned int hash) |
1572 | { |
1573 | struct re_state_table_entry *spot; |
1574 | reg_errcode_t err; |
1575 | int i; |
1576 | |
1577 | newstate->hash = hash; |
1578 | err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem); |
1579 | if (BE (err != REG_NOERROR, 0)__builtin_expect (err != REG_NOERROR, 0)) |
1580 | return REG_ESPACE; |
1581 | for (i = 0; i < newstate->nodes.nelem; i++) |
1582 | { |
1583 | int elem = newstate->nodes.elems[i]; |
1584 | if (!IS_EPSILON_NODE (dfa->nodes[elem].type)((dfa->nodes[elem].type) & 8)) |
1585 | if (re_node_set_insert_last (&newstate->non_eps_nodes, elem) < 0) |
1586 | return REG_ESPACE; |
1587 | } |
1588 | |
1589 | spot = dfa->state_table + (hash & dfa->state_hash_mask); |
1590 | if (BE (spot->alloc <= spot->num, 0)__builtin_expect (spot->alloc <= spot->num, 0)) |
1591 | { |
1592 | int new_alloc = 2 * spot->num + 2; |
1593 | re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *,((spot->array != ((void*)0)) ? (re_dfastate_t * *) realloc (spot->array,(new_alloc)*sizeof(re_dfastate_t *)) : (re_dfastate_t * *) calloc(new_alloc,sizeof(re_dfastate_t *))) |
1594 | new_alloc)((spot->array != ((void*)0)) ? (re_dfastate_t * *) realloc (spot->array,(new_alloc)*sizeof(re_dfastate_t *)) : (re_dfastate_t * *) calloc(new_alloc,sizeof(re_dfastate_t *))); |
1595 | if (BE (new_array == NULL, 0)__builtin_expect (new_array == ((void*)0), 0)) |
1596 | return REG_ESPACE; |
1597 | spot->array = new_array; |
1598 | spot->alloc = new_alloc; |
1599 | } |
1600 | spot->array[spot->num++] = newstate; |
1601 | return REG_NOERROR; |
1602 | } |
1603 | |
1604 | static void |
1605 | free_state (re_dfastate_t *state) |
1606 | { |
1607 | re_node_set_free (&state->non_eps_nodes)free ((&state->non_eps_nodes)->elems); |
1608 | re_node_set_free (&state->inveclosure)free ((&state->inveclosure)->elems); |
1609 | if (state->entrance_nodes != &state->nodes) |
1610 | { |
1611 | re_node_set_free (state->entrance_nodes)free ((state->entrance_nodes)->elems); |
1612 | re_free (state->entrance_nodes)free (state->entrance_nodes); |
1613 | } |
1614 | re_node_set_free (&state->nodes)free ((&state->nodes)->elems); |
1615 | re_free (state->word_trtable)free (state->word_trtable); |
1616 | re_free (state->trtable)free (state->trtable); |
1617 | re_free (state)free (state); |
1618 | } |
1619 | |
1620 | /* Create the new state which is independ of contexts. |
1621 | Return the new state if succeeded, otherwise return NULL. */ |
1622 | |
1623 | static re_dfastate_t * |
1624 | internal_function |
1625 | create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes, |
1626 | unsigned int hash) |
1627 | { |
1628 | int i; |
1629 | reg_errcode_t err; |
1630 | re_dfastate_t *newstate; |
1631 | |
1632 | newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); |
1633 | if (BE (newstate == NULL, 0)__builtin_expect (newstate == ((void*)0), 0)) |
1634 | return NULL((void*)0); |
1635 | err = re_node_set_init_copy (&newstate->nodes, nodes); |
1636 | if (BE (err != REG_NOERROR, 0)__builtin_expect (err != REG_NOERROR, 0)) |
1637 | { |
1638 | re_free (newstate)free (newstate); |
1639 | return NULL((void*)0); |
1640 | } |
1641 | |
1642 | newstate->entrance_nodes = &newstate->nodes; |
1643 | for (i = 0 ; i < nodes->nelem ; i++) |
1644 | { |
1645 | re_token_t *node = dfa->nodes + nodes->elems[i]; |
1646 | re_token_type_t type = node->type; |
1647 | if (type == CHARACTER && !node->constraint) |
1648 | continue; |
1649 | #ifdef RE_ENABLE_I18N |
1650 | newstate->accept_mb |= node->accept_mb; |
1651 | #endif /* RE_ENABLE_I18N */ |
1652 | |
1653 | /* If the state has the halt node, the state is a halt state. */ |
1654 | if (type == END_OF_RE) |
1655 | newstate->halt = 1; |
1656 | else if (type == OP_BACK_REF) |
1657 | newstate->has_backref = 1; |
1658 | else if (type == ANCHOR || node->constraint) |
1659 | newstate->has_constraint = 1; |
1660 | } |
1661 | err = register_state (dfa, newstate, hash); |
1662 | if (BE (err != REG_NOERROR, 0)__builtin_expect (err != REG_NOERROR, 0)) |
1663 | { |
1664 | free_state (newstate); |
1665 | newstate = NULL((void*)0); |
1666 | } |
1667 | return newstate; |
1668 | } |
1669 | |
1670 | /* Create the new state which is depend on the context CONTEXT. |
1671 | Return the new state if succeeded, otherwise return NULL. */ |
1672 | |
1673 | static re_dfastate_t * |
1674 | internal_function |
1675 | create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes, |
1676 | unsigned int context, unsigned int hash) |
1677 | { |
1678 | int i, nctx_nodes = 0; |
1679 | reg_errcode_t err; |
1680 | re_dfastate_t *newstate; |
1681 | |
1682 | newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); |
1683 | if (BE (newstate == NULL, 0)__builtin_expect (newstate == ((void*)0), 0)) |
1684 | return NULL((void*)0); |
1685 | err = re_node_set_init_copy (&newstate->nodes, nodes); |
1686 | if (BE (err != REG_NOERROR, 0)__builtin_expect (err != REG_NOERROR, 0)) |
1687 | { |
1688 | re_free (newstate)free (newstate); |
1689 | return NULL((void*)0); |
1690 | } |
1691 | |
1692 | newstate->context = context; |
1693 | newstate->entrance_nodes = &newstate->nodes; |
1694 | |
1695 | for (i = 0 ; i < nodes->nelem ; i++) |
1696 | { |
1697 | re_token_t *node = dfa->nodes + nodes->elems[i]; |
1698 | re_token_type_t type = node->type; |
1699 | unsigned int constraint = node->constraint; |
1700 | |
1701 | if (type == CHARACTER && !constraint) |
1702 | continue; |
1703 | #ifdef RE_ENABLE_I18N |
1704 | newstate->accept_mb |= node->accept_mb; |
1705 | #endif /* RE_ENABLE_I18N */ |
1706 | |
1707 | /* If the state has the halt node, the state is a halt state. */ |
1708 | if (type == END_OF_RE) |
1709 | newstate->halt = 1; |
1710 | else if (type == OP_BACK_REF) |
1711 | newstate->has_backref = 1; |
1712 | |
1713 | if (constraint) |
1714 | { |
1715 | if (newstate->entrance_nodes == &newstate->nodes) |
1716 | { |
1717 | newstate->entrance_nodes = re_malloc (re_node_set, 1)((re_node_set *) malloc ((1) * sizeof (re_node_set))); |
1718 | if (BE (newstate->entrance_nodes == NULL, 0)__builtin_expect (newstate->entrance_nodes == ((void*)0), 0 )) |
1719 | { |
1720 | free_state (newstate); |
1721 | return NULL((void*)0); |
1722 | } |
1723 | if (re_node_set_init_copy (newstate->entrance_nodes, nodes) |
1724 | != REG_NOERROR) |
1725 | return NULL((void*)0); |
1726 | nctx_nodes = 0; |
1727 | newstate->has_constraint = 1; |
1728 | } |
1729 | |
1730 | if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context)((((constraint) & 0x0001) && !((context) & 1) ) || ((constraint & 0x0002) && ((context) & 1 )) || ((constraint & 0x0010) && !((context) & (1 << 1))) || ((constraint & 0x0040) && !( (context) & ((1 << 1) << 1))))) |
1731 | { |
1732 | re_node_set_remove_at (&newstate->nodes, i - nctx_nodes); |
1733 | ++nctx_nodes; |
1734 | } |
1735 | } |
1736 | } |
1737 | err = register_state (dfa, newstate, hash); |
1738 | if (BE (err != REG_NOERROR, 0)__builtin_expect (err != REG_NOERROR, 0)) |
1739 | { |
1740 | free_state (newstate); |
1741 | newstate = NULL((void*)0); |
1742 | } |
1743 | return newstate; |
1744 | } |